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ABSTRACT. We introduce ANNz, a freely available software package for photometric redshift estimation
using artificial neural networks. ANNz learns the relation between photometry and redshift from an appropriate
training set of galaxies for which the redshift is already known. Where a large and representative training set is
available, ANNz is a highly competitive tool when compared with traditional template-fitting methods. The ANNz
package is demonstrated on the Sloan Digital Sky Survey Data Release 1, and for this particular data set the
rms redshift error in the range is . Nonideal conditions (spectroscopic sets that are small0 � z � 0.7 j p 0.023rms

or brighter than the photometric set for which redshifts are required) are simulated, and the impact on the
photometric redshift accuracy is assessed.2

1. INTRODUCTION

In its most general sense, the term “photometric redshift”
refers to a redshift estimated using only medium- or broadband
photometry or imaging. Most commonly, photometric redshifts
are determined on the basis of galaxies’ colors in three or more
filters (thus giving a very coarse approximation to the spectral
energy distribution [SED], but they could also be based on
other properties that can be derived from images, such as the
angular size or concentration index. The method has found
successful application to deep-field and wide-field surveys, no-
tably the Hubble Deep Field (e.g., Ferna´ndez-Soto, Lanzetta,
& Yahil 1999) and the Sloan Digital Sky Survey (SDSS; Csabai
et al. 2003).

The most commonly used approach to photometric redshift
estimation is the “template matching” technique. This requires
a set of “template” SEDs covering a range of galaxy types,
luminosities, and redshifts appropriate to the population for
which photometric redshifts are required. For a particular target
galaxy, the photometric redshift is chosen to be the redshift of
the most closely matching template spectrum; this is usually
defined as the template that minimizes the between the2x

template and actual magnitudes.
The template spectra are usually derived from a small set of

SEDs representing different classes of galaxy at redshiftz p
, which are then manually redshifted to give a discrete sam-0

pling along the redshift axis (note that this method does not
account forevolution with redshift). Commonly used template
sets are the Coleman, Wu, & Weedman (1980; hereafter CWW)
SEDs, which are derived observationally, or those of Bruzual

1 Current address: Department of Physics and Astronomy, University College
London, Gower Street, London WC1E 6BT, UK.

2 The package can be freely downloaded from http://www.ast.cam.ac.uk/
∼aac.

& Charlot (1993), derived from population synthesis models.
The template-matching technique owes its popularity to the
very few resources required for a basic implementation (i.e.,
a handful of template SEDs), but the accuracy of the technique
strongly depends on the extent to which the template spectra
are representative of the target populations: for example, tem-
plate SEDs derived from observations of low-redshift galaxy
populations may be a poor match for populations at higher
redshifts.

The chances of success can be improved by increasing the
number of templates, or by more carefully matching the tem-
plates to the populations being studied. For example, the spec-
troscopic catalog of the SDSS (York et al. 2000) could be used
to produce a set of templates that are very well representative
of the SDSS photometric catalog (Csabai et al. 2003). However,
in situations with such a large amount of prior redshift infor-
mation about the sample, the template-matching technique is
not the best approach: so-called “empirical” methods usually
offer greater accuracy, as well as being far more efficient.

In essence, empirical photometric redshift methods aim to
derive a parametrization for the redshift as a function of the
photometric parameters. The form of this parametrization is
deduced through use of a suitably large and representative train-
ing set of galaxies for which we have both photometry and a
precisely known redshift. A simple example is to express the
redshift as a polynomial in the galaxy colors (e.g., Connolly
et al. 1995; Sowards-Emmerd et al. 2000). The coefficients in
the polynomial are varied to optimize the fit between the pre-
dicted and measured redshift. The photometric redshift for the
galaxies for which we have no spectroscopy can then be es-
timated by applying the optimized function to the colors of the
target galaxy.

Ideally, the training set would be a representative subset of
the actual photometric target sample (this has the attractive side
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Fig. 1.—Schematic diagram of a multilayer perceptron, as implemented by
ANNz, with input nodes taking, for example, magnitudesm p �2.5 log fi 10 i

in various filters, a single hidden layer, and a single output node giving, for
example, redshiftz. The architecture is in the notation used in thisn : p : 1
paper. Each connecting line carries a weight . The bias node allows for anwij

additive constant in the network function defined at each node. More complex
networks can have additional hidden layers and/or outputs.

effect of nullifying any systematics in the photometry). How-
ever, the training set could also be derived from a set of template
spectra or from simulated catalogs (e.g., Vanzella et al. 2004).
The photometry for the training set must be for the same filter
set and should have the same noise characteristics as that for
the target sample. The trained method can usually only be
reliably applied to target galaxies within the ranges of redshift
and spectral type adequately sampled by the training set.

In this paper we introduce ANNz, a software package for
photometric redshift estimation using artificial neural networks
(ANNs) to parametrize the redshift-photometry relation. It can
be shown (e.g., Jones 1990; Blum & Li 1991) that a sufficiently
complex ANN is capable of approximating to arbitrary accu-
racy any continuous functional mapping. ANNs have previ-
ously found a number of applications in astronomy, including
morphological classification of galaxies (e.g., Lahav et al. 1996;
Ball et al. 2003) star/galaxy separation (Bertin & Arnouts
1996), and object detection (e.g., Andreon et al. 2000). Firth,
Lahav, & Somerville (2003) previously demonstrated the feas-
ibility of using ANNs for photometric redshift estimation, and
more recently, Vanzella et al. (2004) have applied the method
to the Hubble Deep Fields.

The layout of this paper is as follows. In § 2 artificial neural
networks are introduced, and the particular methods used by
ANNz are explained. In § 3 ANNz is applied to the SDSS. The
results are compared with rival photometric redshift estimators
and various extensions to the basic technique are explained and
illustrated. Finally, less ideal conditions are simulated to assess
the impact on the accuracy of photometric redshift estimation.
In § 4 the results are summarized, and prospects for the ap-
plication of ANNz discussed.

2. ARTIFICIAL NEURAL NETWORKS

ANNz uses a particular species of ANN known formally
as a “multilayer perceptron” (MLP). A MLP consists of a
number of layers ofnodes (Fig. 1; see, e.g., Bishop 1995 and
references therein for background). The first layer contains
the inputs, which in our application to photometric redshift
estimation are the magnitudes, , of a galaxy in a numbermi

of filters (for ease of notation we arrange these in a vector
). The final layer contains the outputs;m { [m , m , … , m ]1 2 n

we will usually use just one output, the photometric redshift
, but see § 3.2.2 for an example with multiple outputs.zphot

Intervening layers are described as “hidden,” and there is com-
plete freedom over the number and size of hidden layers used.
The nodes in a given layer are connected to all the nodes in
adjacent layers. A particular network architecture can be de-
noted by , where is the number ofN : N : N : … : N Nin 1 2 out in

input nodes, is the number of nodes in the first hidden layer,N1

and so on. For example, takes nine inputs, has six9 : 6 : 1
nodes in a single hidden layer, and gives a single output.

Each connection carries a weight, ; these comprise thewij

vector of coefficients, , that are to be optimized. Anactivationw
function, , is defined at each node, taking as its argumentg (u )j j

u p w g (u ), (1)�j ij i i
i

where the sum is over all nodesi sending connections to node
j. The activation functions are typically taken (in analogy to
biological neurons) to be sigmoid functions such asg (u ) pj j

, and we follow this approach here. An extra1/[1 � exp (�u )]j

input node—the bias node—is automatically included to allow
for additive constants in these functions.

For a particular input vector, the output vector of the network
is determined by progressing sequentially through the network
layers, from inputs to outputs, calculating the activation of each
node (hence, this type of neural network is often referred to
as a “feed forward” network).

2.1. Network Training

Given a suitable training set of galaxies for which we have
both photometry, , and a spectroscopic redshift, , them zspec

ANN is trained by minimizing thecost function

2E p [z (w, m ) � z ] (2)� phot k spec,k
k

with respect to the weights, , where is the networkw z (w, m )phot k

output for the given input and weight vectors, and the sum is
over the galaxies in the training set. To ensure that the weights
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are regularized (i.e., that they do not become too large), an
extra quadratic cost term

2E p b w , (3)�w ij
i, j

is added to equation (2).
ANNz uses an iterative quasi-Newtonian method to perform

this minimization. Details of the minimization algorithm and
regularization can be found in Bishop (1995) and Lahav et al.
(1996; appendices).

After each training iteration, the cost function is also eval-
uated on a separatevalidation set. After a chosen number of
training iterations, training terminates and the final weights
chosen for the ANN are those from the iteration at which the
cost function is minimal on the validation set. This is useful
to avoid overfitting to the training set if the training set is small.
The trained network can then be presented with previously
unseen input vectors, and the outputs computed.

2.2. Photometric Noise

In real situations the inputs to the network (e.g., in this case,
the magnitudes of photometric redshift estimation) will usually
have a measurement noise associated with them. We can assess
the variance these errors effect in the output using the usual
chain-rule approach:

2

�z2 2j p j , (4)�z mi( )�mi i

where the sum is over the network inputs.
Given a trained network, the output is an analytic function

of the network weights and the input vector, . Pro-z p z(w, m)
vided the activation functions, , are differentiable, theg (u )i i

derivatives can be obtained through a simple and effi-�z/�mi

cient algorithm (Bishop 1995, pp. 148–150). This method is
used by ANNz to estimate the variance in its photometric red-
shifts due to the photometric noise.

2.3. Network Variance

Prior to training, ANNz randomizes the initial values of the
weights. Depending on the particular initialization state used,
the training process will usually converge to different local
minima of the cost function. A simple possibility is to train a
number of networks and select one based on the best perfor-
mance on the validation set. However, this is a wasteful use
of training effort; in fact, the suboptimal networks can be used
to improve overall accuracy: the mean of the individual outputs
of a group of networks (known as a “committee”) will usually
be a more accurate estimate for the true redshift than the outputs
of any one committee member in isolation.

Using a committee also allows the uncertainty in the output

due to the variance in the network weights to be estimated.
For a particular target galaxy, the photometric redshift predic-
tion should ideally be robust to different initializations of the
weight vector. However, it may be the case that the available
photometry or training set does not constrain the redshift very
well (even for high signal-to-noise photometry, so the error
estimated by the method of § 2.2 could be relatively small).
These cases are more likely to show a large variance in the
output for different initializations of the weight vector; hence,
using a committee may assist in their identification. ANNz
allows arbitrarily large committees to be used and estimates
the contribution of the network variance to the error in the
photometric redshift for each target galaxy.

2.4. Using the ANNz Package

We have made ANNz available on the World Wide Web.3

Full instructions are provided with the package, but we provide
an outline of the procedure here. ANNz comprises two main
programs:annz_train andannz_test.

1. When applying ANNz to any data set for the first time,
it is strongly recommended that a portion of the available train-
ing data be set aside as an evaluation set. This is used as a
mock target sample to assess and tune ANNz’s performance
on the data. The evaluation set should therefore be chosen to
match the real target sample as closely as possible in terms of
its magnitude and color distributions.

2. The remaining training data should be separated into train-
ing and validation sets that are supplied to theannz_train pro-
gram along with a description of the required network archi-
tecture. This program performs the network training as
described in § 2.1. The trained network weights are saved to
file.

3. Step 2 may be repeated several times using different net-
work initializations to obtain a committee of trained networks.

4. The annz_test program can now be used to apply the
trained networks to the target data.

Before applying ANNz to the actual photometric target sample,
the whole procedure should be run several times using the
evaluation set as the target data and varying the parameters of
the training (e.g., weight decay, training and validation set sizes,
number of networks in the committee) so as to optimize the
performance.

3 ANNz is available at the following address: http://www.ast.cam.ac.uk/∼aac.
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TABLE 1
Errors on Photometric Redshifts Obtained by
Csabai et al. (2003) for the SDSS Early Data

Release—Result Obtained Using ANNz
Appended for Comparison

Estimation Method jrms

CWW .. . . . . . . . . . . . . . . . . . . 0.0666
Bruzual-Charlot. . . . . . . . . . 0.0552
Interpolated . . . . . . . . . . . . . . 0.0451
Polynomial . . . . . . . . . . . . . . . 0.0318
Kd-tree . . . . . . . . . . . . . . . . . . . 0.0254
ANNz . . . . . . . . . . . . . . . . . . . . 0.0229

Fig. 2.—Spectroscopic vs. photometric redshifts for ANNz applied to 10,000
galaxies randomly selected from the SDSS EDR.

3. APPLICATION TO SDSS DATA

The SDSS4 (York et al. 2000) combines a large, five-band
(ugriz) imaging survey with a smaller spectroscopic follow-up
survey. This is an ideal situation for the application of ANNz,
since the spectroscopic survey represents an excellent training
set for the imaging survey.

The selection algorithm for the SDSS spectroscopic survey
results in two subsets of the data: a main galaxy catalog and
a luminous red galaxy catalog (LRG; Eisenstein et al. 2001).
The main galaxy catalog is a flux-limited sample ( )r ! 17.77
with a median redshift (Strauss et al. 2002), whilez p 0.104
the LRG catalog is flux- and color-selected to be a very uniform
and approximately volume limited sample (it is volume limited
to but probes out to at lower completion).z ≈ 0.4 z ≈ 0.6

3.1. Comparison of ANNz with Other Techniques

The SDSS consortium have themselves applied a range of
photometric redshift techniques to their commissioning data
(Csabai et al. 2003). Table 1 lists the estimation errors they
obtained. This commissioning data was made public in the
Early Data Release (EDR; Stoughton et al. 2002). In order
to allow a direct comparison of the accuracy of ANNz with
the methods used by Csabai et al. (2003), we selected the
main galaxy and LRG samples from the EDR. From these
∼30,000 galaxies, we randomly selected training, validation,
and evaluation sets with the respective sizes 15,000, 5000,
and 10,000. The network inputs were the dereddened model
magnitudes in each of the five filters, and the overall archi-

4 Funding for the creation and distribution of the SDSS Archive has been
provided by the Alfred P. Sloan Foundation, the Participating Institutions, the
National Aeronautics and Space Administration, the National Science Foun-
dation, the US Department of Energy, the Japanese Monbukagakusho, and the
Max Planck Society. The SDSS Web site is http://www.sdss.org. The SDSS
is managed by the Astrophysical Research Consortium (ARC) for the Partic-
ipating Institutions. The Participating Institutions are The University of Chi-
cago, Fermilab, the Institute for Advanced Study, the Japan Participation
Group, The Johns Hopkins University, Los Alamos National Laboratory, the
Max Planck Institute for Astronomy (MPIA), the Max Planck Institute for
Astrophysics (MPA), New Mexico State University, University of Pittsburgh,
Princeton University, the United States Naval Observatory, and the University
of Washington.

tecture was . A committee of five such networks5 : 10 : 10 : 1
was trained on the training and validation sets, then applied
to the evaluation set. Figure 2 shows the ANNz photometric
redshift against the spectroscopic value for each galaxy in the
evaluation set. The rms deviation between these isj prms

, which compares well with the re-2 1/2A(z � z ) S p 0.0229phot spec

sults in Table 1. For clarity, the estimated errors on the pho-
tometric redshifts are not shown in Figure 2. The results for a
randomly selected subset of 200 galaxies are shown with error
bars in Figure 3. Because of the high quality of the training
data in this case, network variance makes only a small con-
tribution, and the errors are therefore dominated by the pho-
tometric noise.

HYPERZ (Bolzonella, Miralles, & Pello´ 2000) is a widely used
template-based photometric redshift package. In order to more
directly compare ANNz with the template-matching method, HY-
PERZ was applied to the same evaluation set using the CWW
template SEDs. It is clear from the results in Figure 4 that not
only is the rms dispersion in the photometric redshift consid-
erably greater than that for ANNz, but there are also systematic
deviations in the HYPERZ results. The SDSS consortium ob-
tained similar accuracies to HYPERZ in their implementation
of the basic template-fitting technique (the results labeled
“CWW” and “Bruzual-Charlot” in Table 1 are for the respective
template sets). With more sophisticated template-based meth-
ods, they were able to improve on these errors: the result labeled
“Interpolated” was obtained by first tuning the templates using
the spectroscopic sample as a training set, then producing a
continuous range of templates by interpolating between the
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Fig. 3.—Subset of 200 galaxies randomly selected from the results of
Fig. 2, with the error bars calculated by ANNz shown. These are a combination
of contributions from photometric noise (§ 2.2) and network variance (§ 2.3).

Fig. 4.—Photometric redshift estimation using HYPERZ with the CWW
template SEDs. This uses the same 10,000 galaxy sample as Fig. 2. There are
obvious systematic deviations, with bands apparent above and below the

line.z p zphot spec

tweaked SEDs. However, even “hybrid” methods such as this
still do not match the accuracy achieved by the purely empirical
methods (in the table, these are “Polynomial,” which uses a
second-order polynomial as the fitting function, and “Kd-tree,”
in which the training set is partitioned in color-space and a
separate second-order polynomial is fitted in each cell).

3.2. Extensions to the Basic Method

In this section more advanced use of ANNz is demonstrated.
These examples use the LRG and main galaxy data from the
SDSS Data Release 1 (DR1; Abazajian et al. 2003), split into
training, validation, and evaluation sets of respective sizes
50,000, 10,000, and 64,175. For these data the photometric
redshift accuracy on the evaluation set when using the same
basic method as in § 3.1 was .j p 0.0238rms

3.2.1. Using Additional Inputs

One of the great advantages of empirical photometric redshift
methods is the ease with which we can introduce additional
observables into our parametrization of the photometric red-
shift. This is particularly true for ANNz; we simply add an
extra input to our network architecture for each new parameter
we wish to consider. ANNz treats these new inputs in exactly
the same way as it does the galaxy magnitudes.

If the additional inputs contain useful information, then the
ANN will use this to improve the accuracy of its predictions.
However, increasing the number of inputs to the ANN generally
leads to a reduction in thegeneralization capabilities of the
network (that is, its ability to make predictions for data on
which it has not been trained). Thus, the inputs should be
chosen carefully, as noninformative inputs may actually lead
to a worsened ANN performance: due to the increased dimen-
sionality of the input space, larger training sets may be required,
and there will be an increased likelihood of converging to a
local, rather than the global, minimum.

By way of example, ther-band 50% and 90% Petrosian-flux
radii were added as two extra inputs to our ANN. These are
the angular radii (concentric with the galaxy brightness distri-
bution) containing the stated fraction of the Petrosian flux, and
therefore contain information on the angular size of the galaxy
(clearly a strongly distance-dependent property) and the “con-
centration index” (essentially the steepness of the galaxy bright-
ness profile, which may help break degeneracies in the redshift-
color relationship). Running this extended data set through
ANNz (using a committee of five networks) pro-7 : 11 : 11 : 1
duced a redshift estimation accuracy of , an im-j p 0.0230rms

provement of∼3% compared to the results based only on the
magnitudes. In this example the improvement is small (mainly
because the training sample already provided excellent redshift
information), but it demonstrates well how straightforwardly
the extra information could be included for consideration by
ANNz.
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Fig. 5.—Results from using ANNz to predict the spectral type (in the form
of the eClass parameter) simultaneously with the redshift for 64,175 galaxies
from the SDSS Data Release 1.

3.2.2. Predicting Spectral Type

It is equally straightforward to train ANNz to make predic-
tions for properties other than the redshift. Template-matching
photometric redshift techniques have the useful side effect of
assigning an estimated spectral type to each galaxy, in addition
to estimating the redshift. Firth et al. (2003) demonstrated the
use of ANNs to determine spectral types from broadband
photometry.

The spectroscopic catalog of the SDSS includes a contin-
uous parameter (eClass) indicating spectral type that ranges
from approximately�0.5 (early types) to 1 (late types). A

network architecture was used to attempt the si-5 : 10 : 10 : 2
multaneous estimation of redshift andeClass from the pho-
tometry. The accuracy of the redshift estimation was very
slightly poorer, . TheeClass was determined withj p 0.0241rms

an rms error of (Fig. 5).j p 0.0516rms

3.3. More Realistic Conditions

Our example applications to the SDSS above are somewhat
idealistic, since we are training and testing on samples with
identical redshift, magnitude, and galaxy species distributions.
Furthermore, our training samples have thus far been very
large. In this section, less optimal training sets are used to
investigate their impact on the photometric redshift accuracy.

3.3.1. Smaller Training Sets

The size of training sample needed will be strongly depen-
dent on the range of redshifts and galaxy types in the target
sample. The same evaluation set of 64,175 galaxies was sub-
mitted to networks trained on randomly selected samples of
(1) 2000 galaxies and (2) 200 galaxies. In both cases these
samples were split equally into the training and validation sets.
Committees of five networks were used.5 : 10 : 10 : 1

The photometric redshift accuracies were respectively
(1) and (2) . In the first case thej p 0.0263 j p 0.0343rms rms

loss of accuracy is small, while the second case demonstrates
well the problems associated with small training sets. The rarer
classes of objects in the target sample (e.g., here, those at high
redshift) feature very sparsely (if at all) in the training set, and
so the network is unable to sensibly deal with these objects
when they appear in the testing data. This leads to an increased
number of outliers and, potentially, the introduction of system-
atic errors.

3.3.2. Biased Training Sets

For increasingly faint targets, acquiring good spectroscopy
becomes increasingly difficult and eventually prohibitively ex-
pensive; this problem is the primary motivation for photometric
redshifts. In practice then, the available spectroscopic training
sample is likely to be somewhat brighter on average than the
photometric target sets. However, the major stumbling block
for empirical photometric redshift estimation techniques is the

difficulty in applying them outside of the regions of parameter
space that are well sampled by the training data: while the
estimator ought to be able to interpolatewithin the training
regime, extrapolating beyond is much more problematic. Ide-
ally, we would like to be able to train our estimator on bright
galaxies and then confidently apply it to faint galaxies.

We can improve the ANN’s prospects by careful preselection
of the data set. The LRGs are a very uniform sample with
respect to spectral types, since these early-type galaxies show
little spectral evolution with redshift; this might be expected
to make extrapolation a more manageable task. To assess the
effectiveness of ANNz in this situation, the LRG sample was
split roughly in half by imposing a magnitude cut atr p

. The brighter subsample was further divided at random18.5
into training and validation sets of size 5000 and 2000 galaxies,
respectively. A committee of five networks was5 : 10 : 10 : 1
trained on this data and then applied to the remaining∼6000
LRGs (for which the limiting magnitude is ).r ≈ 19.6

The results are shown in Figure 6. The overall dispersion is
, which represents only a slight loss of accuracyj p 0.0327rms

when compared with results using a LRG training set selected
over all magnitudes ( ). Thus, in this particularj p 0.0294rms

case, ANNz is able to extrapolate with some success to around
a magnitude fainter than is sampled by the training data.

4. CONCLUSIONS

In appropriate circumstances, ANNz is a highly competitive
tool for photometric redshift estimation. However, it does rely
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Fig. 6.—Results from training networks on LRGs with , but appliedr ! 18.5
to LRGs with strictly (note the change of intercept of the axes). Ther 1 18.5
limiting magnitude for the LRGs is .r ≈ 19.6

on the existence of a sufficiently large training set that is rep-
resentative of the particular populations being studied. The
package’s utility therefore lies particularly with large pho-
tometric surveys such as the SDSS, GOODS (Dickinson et
al. 2001), or the VIRMOS-VLT Deep Survey (Le Fevre et
al. 2003), some of which include spectroscopic surveys for
subsets of the photometric catalogs (for example, of the even-

tual 100 million photometric objects that the SDSS expects to
catalog, 1 million will also have spectroscopy, and hence ac-
curate redshifts).

A major problem for empirical photometric redshift esti-
mators is the difficulty in extrapolating to regions of the input
parameter space that are not well sampled by the training data.
Care should be taken to match the training data to the target
sample as closely as possible in terms of the magnitude and
color distributions of each. Use of an evaluation set is essential
when applying ANNz to a new data set: the good performance
demonstrated here on the SDSS data cannot be guaranteed on
different data sets.

A potential solution to the problem of obtaining training sets
when spectroscopy is difficult to obtain is to use simulated
catalogs as training data (e.g., Vanzella et al. 2004). Since this
requires the use of theoretical SEDs, it introduces the disad-
vantages of the template-based methods, such as the need for
precise calibration. However, the ANN approach has advan-
tages over standard template-matching: simulated catalogs can
contain galaxies representing a large range of complex star
formation histories, dust extinction models, metallicities, etc.,
giving fully Bayesian statistics, and ANNs allow much more
flexible weighting to be applied to the filters than is possible
with the simple weighting of standard template matching.2x

We acknowledge help and advice from Stefano Andreon,
Andrew Firth, Rachel Somerville, and Elizabeth Stanway. The
ANN training program is based on code kindly provided by
B. D. Ripley. A. A. C. is supported by an Isle of Man De-
partment of Education Postgraduate Studies Grant. O. L. ac-
knowledges a PPARC Research Senior Fellowship.5

5 Comments on the ANNz package are welcomed at aac@ast.cam.ac.uk.
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